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A trisection of a smooth, closed, oriented 4–manifold is a decomposition into

three 4–dimensional 1–handlebodies meeting pairwise in 3–dimensional 1–

handlebodies, with triple intersection a closed surface. The fundamental groups

of the surface, the 3–dimensional handlebodies, the 4–dimensional handlebodies,

and the closed 4–manifold, with homomorphisms between them induced by inclu

sion, form a commutative diagram of epimorphisms, which we call a trisection of

the 4–manifold group. A trisected 4–manifold thus gives a trisected group; here

we show that every trisected group uniquely determines a trisected 4–manifold.

Together with Gay and Kirby’s existence and uniqueness theorem for 4–manifold

trisections, this gives a bijection from group trisections modulo isomorphism and a

certain stabilization operation to smooth, closed, connected, oriented 4–manifolds

modulo diffeomorphism. As a consequence, smooth 4–manifold topology is,

in principle, entirely group theoretic. For example, the smooth 4–dimensional

Poincaré conjecture can be reformulated as a purely group theoretic statement. ∗

57M05; 20F05

Let g and k be integers with g ≥ k ≥ 0. We fix the following groups, described

explicitly by presentations:

• S0 = {1} and, for g > 0, Sg = 〈a1, b1, . . . , ag, bg | [a1, b1] . . . [ag, bg]〉, i.e. the

standard genus g surface group with standard labelled generators. We identify

this in the obvious way with π1(#gS1 × S1, ∗).

• H0 = {1} and, for g > 0, Hg = 〈x1, . . . , xg〉, i.e. a free group of rank g with g

labelled generators. We identify this in the obvious way with π1(♮gS1 × B2, ∗).

Note that, if g < g′ , then Hg ⊂ Hg′ .

• Z0 = {1} and, for k > 0, Zk = 〈z1, . . . , zk〉, i.e. a free group of rank k with k

labelled generators. We identify this in the obvious way with π1(♮kS1 × B3, ∗).

Again, if k < k′ then Zk ⊂ Zk′ .

∗This work was supported by NSF grant DMS1207721 and by two grants from the Simons

Foundation (#359873 to David Gay and #281189 to Aaron Abrams).



2 Aaron Abrams, David T Gay and Robion Kirby

Let V denote the set of vertices of a cube, and let E denote the set of edges.

Definition 1 A (g, k)–trisection of a group G is a commutative cube of groups as

shown below, such that each homomorphism is surjective and each face is a pushout.

Hg Zk

Sg Hg Zk G

Hg Zk

We label the groups {Gv | v ∈ V} and the maps {fe | e ∈ E}, so that a trisection

of G is the pair ({Gv}, {fe}). A trisected isomorphism from a trisection ({Gv}, {fe})

of G to a trisection ({G′

v}, {f ′e}) of G′ is a collection of isomorphisms hv : Gv →

G′

v , for all v ∈ V , commuting with the fe ’s and f ′e ’s. A trisected isomorphism is

orientation preserving if the isomorphism h : Sg → Sg induces an isomorphism on the

abelianizations h∗ : Z2g → Z
2g which has determinant +1.

Because all maps after the initial three fe ’s are pushout maps, a trisection of the group

G is determined by these fe : Sg → Hg . More generally, given any triple of group

homomorphisms αi : A → Bi, i = 1, 2, 3, epimorphisms or not, one can define Cij

as the pushout of the maps αi and αj and Di as the pushout of the maps Bi → Cij

and Bi → Cik . It becomes apparent that the Di, i = 1, 2, 3 are canonically isomorphic

when one writes down presentations for A and the Bi and then sees what happens.

Thus any triple of maps fe : Sg → Hg with rank k free pushouts uniquely determines

a group trisection. (Even more generally, Peter Teichner has pointed out that in any

category with colimits, a triple of morphisms A → Bi, i = 1, 2, 3 determines a cube of

pushout maps whose far corner is the colimit of the triple of morphisms.)

In view of this, one could define an abstract (g, k)–group trisection as a triple of

epimorphisms fi : Sg → Hg (i = 1, 2, 3), whose pairwise pushouts are rank k free

groups. By taking the colimit, an abstract group trisection then uniquely determines a

group trisection of a particular group. This parallels the distinction between an abstract

group presentation, which is a list of generators and relators but which doesn’t include

the group itself in the notation, and a presentation of a particular group G, in which

G is identified with the abstract group being presented. In any case, in this paper we

work with (g, k)–trisections of a group G.

There is a unique (0, 0)–trisection of the trivial group. Figure 1 illustrates a (3, 1)–

trisection of the trivial group, which we will call “the standard trivial (3, 1)–trisection.”
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Definition 4 [1] A (g, k)–trisection of a smooth, closed, oriented, connected 4–

manifold X is a decomposition X = X1 ∪ X2 ∪ X3 such that:

• Each Xi is diffeomorphic to ♮kS1 × B3 .

• Each Xi ∩ Xj , with i 6= j, is diffeomorphic to ♮gS1 × B2 .

• X1 ∩ X2 ∩ X3 is diffeomorphic to #gS1 × S1 = Σg .

If X is equipped with a base point p, a based trisection of (X, p) is a trisection with

p ∈ X1∩X2∩X3 . A parametrized based trisection of (X, p) is a based trisection equipped

with fixed diffeomorphisms (the “parametrizations”) from the (Xi, p)’s to (♮kS1×B3, ∗),

from the (Xi ∩Xj, p)’s to (♮gS1 ×B2, ∗) and from X1 ∩X2 ∩X3 to (#gS1 × S1 = Σg, ∗),

where ∗ in each case indicates a standard fixed base point, respected by the standard

inclusions (#gS1 ×S1 = Σg, ∗) →֒ (♮gS1 ×B2, ∗) →֒ (♮kS1 ×B3, ∗). A trisected diffeo

morphism between trisected 4manifolds is simply a diffeomorphism that respects the

decomposition, and a trisected diffeomorphism is orientation preserving if it preserves

orientations on each piece.

Henceforth, all manifolds are smooth, oriented and connected, and all diffeomorphisms

preserve orientation. Until further notice, trisected 4–manifolds are closed.

There is an obvious map from the set of parametrized based trisected 4–manifolds

to the set of trisected groups, which we will call G ; the groups are the fundamental

groups of the Xi ’s and their intersections, after identification with standard models via

the parametrizations, and the maps are those induced by inclusions composed with

parametrizations. Changing the parametrizations (but respecting orientations) and

base point will change the group trisection by an orientation preserving isomorphism

of trisected groups, and thus we will also see G as a map from trisected 4–manifolds

to trisected groups up to orientation preserving isomorphism.

The main result of this paper is that G induces a bijection between trisected 4–

manifolds up to orientation preserving trisected diffeomorphism and trisected groups

up to orientation preserving trisected isomorphism, and that this bijection respects

stabilizations in both categories.

Theorem 5 There exists a map M from the set of trisected groups to the set of

trisected 4–manifolds such that M◦ G is the identity up to orientation preserving tri

sected diffeomorphism and G ◦M is the identity up to orientation preserving trisected

isomorphism. The unique (0, 0)–trisection of {1} maps to the unique (0, 0)–trisection

of S4 , the standard (3, 1)–trisection of {1} maps to the standard (3, 1)–trisection of

S4 , and connected sums of group trisections map to connected sums of 4–manifold
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trisections. Thus M induces a bijection between the set of trisected groups modulo

orientation preserving trisected isomorphism and stabilization and the set of smooth,

closed, connected, oriented 4–manifolds modulo orientation preserving diffeomor

phism.

Though it might not be obvious from a purely grouptheoretic point of view, it fol

lows from [1] that every finitely presented group admits a trisection, because every

finitely presented group is the fundamental group of a closed, orientable 4–manifold.

Even more striking, perhaps, is that by Theorem 5 the collection of trisections of any

particular group contains all the complexity of smooth 4–manifolds with the given fun

damental group, including not just their homotopy types but also their diffeomorphism

types. In particular there is a subset of the trisections of the trivial group corresponding

to the countably many exotic smooth structures on a given simply connected topo

logical 4–manifold, e.g. the K3 surface. (To get the full countable collection, it

seems likely that g must be unbounded.) An interesting problem is to understand the

equivalence relation on group trisections that corresponds to homeomorphisms between

4–manifolds.

Considering homotopy 4–spheres, we have

Corollary 6 The smooth 4–dimensional Poincaré conjecture is equivalent to the

following statement: “Every (3k, k)–trisection of the trivial group is stably equivalent

to the trivial trisection of the trivial group.”

Proof A (3k, k)–trisection of the trivial group gives a (3k, k)–trisection of a simply

connected 4–manifold. The Euler characteristic of a (g, k)–trisected 4–manifold is

2 − g + 3k , so in this case we have an Euler characteristic 2 simply connected 4–

manifold, i.e. a homotopy S4 .

One approach to proving the Poincaré conjecture would be to prove first that there is

a unique (3, 1)–trisection of {1}, or at least that every (3, 1)–trisection of {1} gives

a 4–manifold diffeomorphic to S4 , and then prove that, for any (3k, k)–trisection of

{1}, there is a nontrivial group element in the intersection of the kernels of the three

maps Sg → Hg which can be represented as an embedded curve in the corresponding

surface Σg . This would give an inductive proof since such an embedded curve would

give us a way to decompose the given trisection as a connected sum of lower genus

trisections. In fact, this would prove more than the Poincaré conjecture; it would also

prove a 4–dimensional analog of Waldhausen’s theorem [?], to the effect that every

trisection of S4 is a stabilization of the trivial trisection and thus that any two trisections
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of S4 of the same genus are isotopic. (This is not quite as strong as Conjecture 3.11

in [5] since [5] deals with unbalanced trisections and unbalanced stabilizations, in

which each 4–dimensional piece Xi is diffeomorphic to some ♮kiS1 ×B3 but we do not

assume that k1 = k2 = k3 . The theory of group trisections can naturally be extended

to the unbalanced setting.) This strategy would be the exact 4–dimensional parallel to

the strategy outlined in [9] for proving (or failing to prove) the 3–dimensional Poincaré

conjecture.

Proof of Theorem 5 Given a (g, k)–trisection ({Gv}, {fe}) of G, we will construct

M({Gv}, {fe}) beginning with Σg = #gS1 × S1 . For each of the three maps fe : Sg →

Hg , because these are epimorphisms it is a standard fact that there is a diffeomorphism

φe : Σg → ∂(♮gS1 × B2) such that ı ◦ φe : Σg →֒ ♮gS1 × B2 induces fe on π1 . See [4]

for a proof; the sketch of the proof is as follows: Note that there is a map, well defined

up to homotopy by fe , from Σg to a wedge of g circles. Make this transverse to one

point of each circle, not the base point. Then the inverse image of those points is a

collection of embedded circles in Σg . Add a 2–handle to each circle, and then the

new boundary is a collection of 2–spheres. Fill in each with 3–balls resulting in a

handlebody.

Each φe is unique up to postcomposing with a diffeomorphism of ∂(♮gS1 ×B2) which

extends over ♮gS1 × B2 . To see this, suppose that we have two diffeomorphisms

φe, φ
′

e : Σg → ∂(♮gS1 × B2) such that both ı ◦ φe and ı ◦ φ′

e induce fe on π1 . Then in

particular the kernels of ı ◦φe and ı ◦φ′

e coincide. So for any properly embedded disk

D in ♮gS1 × B2 , φ′(φ−1
e (∂D)) is a simple closed curve in ∂(♮gS1 × B2) which bounds

a disk in ♮gS1 × B2 and thus, by Dehn’s lemma [8], also bounds an embedded disk.

Thus, thinking of φe and φ′

e as defining two handlebody fillings of Σg , we see that

any simple closed curve that bounds an embedded disk in one handlebody bounds an

embedded disk in the other handlebody, and thus the two fillings are diffeomorphic.

Use these three diffeomorphisms to attach three copies of ♮gS1 ×B2 , crossed with I , to

∂Σg × D2 in the standard way, giving a 4–manifold with three boundary components,

each presented with a genus g Heegaard splitting. (Note that the cyclic ordering of the

three handlebodies is essential to determine the orientation of the resulting 4–manifold,

and that this is reflected in our definition of group trisection by the fact that the maps

and groups are explicitly labelled by edges and vertices of a standard cube.)

Because each pushout from the initial three maps gives a free group of rank k , we

know that the three boundary components mentioned above are closed 3–manifolds

with rank k free fundamental groups. It is another wellknown fact that each of these

3–manifolds is diffeomorphic to #kS1 × S2 . This follows from Kneser’s conjecture
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(proved by Stallings [10]) that a free product decomposition of the fundamental group

of a 3–manifold corresponds to a connected sum decomposition of the manifold, as

well as Perelman’s proof [7] of the 3–dimensional Poincaré conjecture that shows that

no connected summand has trivial fundamental group. A prime connected summand

(i.e., one that doesn’t decompose further) therefore has fundamental group Z, and a

standard argument using the Loop and Sphere Theorems [8] and the Hurewicz theorem

shows that an orientable prime 3manifold with fundamental group Z must be S1 ×S2 .

See [2, Theorem 5.2] for further details.

Any two ways of filling in a connected sum of S1 × S2 ’s with a 4–dimensional 1–

handlebody differ by a diffeomorphism of the connected sum, and Laudenbach and

Poenaru [3] proved that any such diffeomorphism extends to a diffeomorphism of the

handlebody. Thus we can attach a copy ♮kS1 × B3 to each boundary component to

produce a closed 4–manifold X which is uniquely determined up to diffeomorphism by

this construction. As constructed, X comes with a trisection in which each Xi , Xi ∩ Xj

and X1 ∩ X2 ∩ X3 is by construction identified with the appropriate model manifold,

with a standard base point in X1∩X2∩X3 . In other words, we have constructed a based,

parametrized trisected 4–manifold uniquely determined up to trisected diffeomorphism

by the given trisected group. This is the definition of M({Gv}, {fe}). Note that the

parametrizations are not uniquely determined, due to the indeterminacy associated to,

first, filling in the 3–dimensional handlebodies associated with the surjections Σg → Fg

and, second, attaching the 4–dimensional 1–handlebodies using the identification of

each of the three closed 3–manifolds with #kS1 × S2 .

We have thus far proved that the map M is well defined. We now need to show

that M ◦ G and G ◦ M are the identity maps on appropriate sets up to appropriate

equivalences. The map G simply applies the π1 functor to all pieces of a based,

parameterized trisection of a 4–manifold, so clearly G ◦ M recovers the original

trisected group up to isomorphism (one needs to choose parametrizations to apply G ,

hence the isomorphism). Similarly, starting with a trisected 4–manifold and applying

first G and then M, the arguments above about the well definedness of G({Gv}, {fe})

also show that the resulting trisected 4–manifold here is diffeomorphic to the initial

one.

The main result of [1] is that every smooth, closed, connected, oriented 4–manifold

has a trisection, and that any two trisections of the same 4–manifold become isotopic

after performing some number of connected sums with the standard (3, 1)–trisection

of S4 . The connected sum operation and the (3, 1)–trisection on the group side are

constructed exactly to correspond to stabilization of manifolds via the map M. This

shows that M induces a bijection between trisected groups up to orientation preserving
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isomorphism and stabilization and oriented 4–manifolds up to orientation preserving

diffeomorphism.
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